Triethylenethiophosphoramide is a specific inhibitor of cytochrome P450 2B6: implications for cyclophosphamide metabolism.

نویسندگان

  • James M Rae
  • Nadia V Soukhova
  • David A Flockhart
  • Zeruesenay Desta
چکیده

Cytochrome P450 2B6 is a genetically polymorphic enzyme that is important in the metabolism of a number of clinically used drugs. This enzyme is not as well studied as other cytochrome P450 (P450) isoforms because of the lack of specific antibodies, probe drugs, and inhibitors. Although recent progress has been made toward specific antibodies and probe drugs, a specific enzyme inhibitor is still lacking. Studies suggest that CYP2B6 plays an important role in the 4-hydroxylation of cyclophosphamide and that this reaction can be inhibited by triethylenethiophosphoramide (thioTEPA). We therefore wished to test the hypothesis that thioTEPA is an inhibitor of CYP2B6. Using human liver microsomes (HLMs) and recombinant P450 enzymes, we demonstrated that thioTEPA is a potent and specific inhibitor of CYP2B6. Enzyme activity was reduced 78.1 +/- 0.2% by 50 microM thioTEPA when CYP2B6 activity was measured by following the metabolism of 200 microM S-mephenytoin to nirvanol. thioTEPA did not significantly inhibit (<20% at 100 microM) the other isoforms tested (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4). thioTEPA seems to be a potent noncompetitive inhibitor of CYP2B6, with K(i) values of 4.8 +/- 0.3 and 6.2 +/- 0.7 microM for HLMs and recombinant CYP2B6, respectively, values that are within the plasma concentration range of thioTEPA at therapeutic doses (1.1-18.6 microM). We conclude that thioTEPA is a potent and specific inhibitor of CYP2B6 and that this is the likely mechanism by which thioTEPA inhibits the activation of cyclophosphamide. Furthermore, thioTEPA may prove to be a valuable new tool for the study of this important drug-metabolizing enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The naturally occurring cytochrome P450 (P450) 2B6 K262R mutant of P450 2B6 exhibits alterations in substrate metabolism and inactivation.

The polymorphic human cytochrome P450 (P450) 2B6 is primarily responsible for the metabolism of several clinically relevant drugs including bupropion, cyclophosphamide, propofol, and efavirenz. Although a number of single nucleotide polymorphisms have been found in the P450 2B6 gene, the influence of these variants on the metabolism of substrates and on the response to known inactivators of P45...

متن کامل

Retroviral transfer of human cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy.

Cyclophosphamide (CPA) and ifosfamide (IFA) are widely used anticancer prodrugs that are bioactivated in the liver by specific cytochrome P450 enzymes (CYPs). The therapeutic activity of these antitumor agents can be compromised by a low therapeutic index that is, in part, due to the systemic distribution of activated drug metabolites. Here, recombinant retroviruses were used to deliver six dif...

متن کامل

Metabolism of efavirenz and 8-hydroxyefavirenz by P450 2B6 leads to inactivation by two distinct mechanisms.

Efavirenz is a non-nucleoside human immunodeficiency virus (HIV)-1 reverse transcriptase inhibitor used in combination therapy to treat HIV-1. Efavirenz metabolism is catalyzed primarily by the polymorphic enzyme P450 2B6. Metabolism of efavirenz by P450 2B6 and the naturally occurring P450 2B6.4 mutant led to the formation of 8-hydroxyefavirenz. Efavirenz inactivated the 7-ethoxy-4-(trifluorom...

متن کامل

Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype.

The present study investigated the role of specific human cytochrome P450 (CYP) enzymes in the in vitro metabolism of valproic acid (VPA) by a complementary approach that used individual cDNA-expressed CYP enzymes, chemical inhibitors of specific CYP enzymes, CYP-specific inhibitory monoclonal antibodies (MAbs), individual human hepatic microsomes, and correlational analysis. cDNA-expressed CYP...

متن کامل

Expression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells

Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 30 5  شماره 

صفحات  -

تاریخ انتشار 2002